We do recognize broken machine using sound

Contact: pavel.konecny@neuronsw.com, +420 604 182 351
Neuron soundware builds an **auditory cortex** in machine
Build and train software which understands audio

Car engine issue detector

Pilot product

Escalators

Turbines

Trains

Windmills

Target products
How our technology works?

Then $H^{k+1} | H^k$ and α is computed as follows.

From the

$$d_{1}^{k+1} = x_{1}^{k+1} - x_{1}^{k+1} = x_{1} + \alpha (d_{1} + d_{2}) - x_{1}^{k+1} = (1 + \alpha) d_{1} + \alpha \cdot d_{2}$$
$$d_{2}^{k+1} = x_{2}^{k+1} - x_{2}^{k+1} = x_{2} + \alpha (d_{1} + d_{2}) - x_{2}^{k+1} = (1 + \alpha) d_{2} + \alpha \cdot d_{1}$$

we can obtain the numerator of (2.7) as

$$d_{1}^{k+1} + d_{2}^{k+1} = (1 + \alpha) d_{1} + \alpha \cdot d_{2} + (1 + \alpha) d_{2} + \alpha \cdot d_{1} = (1 + 2 \alpha) \cdot (d_{1} + d_{2})$$

and the denominator of (2.7) as

$$(d_{1}^{k+1})^2 d_{2}^{k+1} + (d_{2}^{k+1})^2 d_{1}^{k+1} = (1 + \alpha)^2 (d_{1}^2 + d_{2}^2) + 4 \alpha + 4 \alpha^2 (d_{1}^2 d_{2} + d_{2}^2 d_{1}) + \alpha^2 \cdot (d_{1}^2 + d_{2}^2)$$

Now, we can figure out the curvature in x_{2}^{k+1} as

$$H^{k+1} = \frac{2 \cdot (d_{1}^{k+1} + d_{2}^{k+1})}{(d_{1}^{k+1})^2 + (d_{2}^{k+1})^2} \cdot d_{2}^{k+1}$$

$$= \frac{2 \cdot (1 + 2 \alpha) \cdot (d_{1} + d_{2})}{(1 + \alpha)^2 (d_{1}^2 + d_{2}^2) + 4 \alpha + 4 \alpha^2 (d_{1}^2 d_{2} + d_{2}^2 d_{1}) + \alpha^2 \cdot (d_{1}^2 + d_{2}^2)}$$

and with notation

$$f = (d_{2}^2 d_{1}) \quad g = (d_{1}^2 + d_{2}^2) \quad z = (d_{1}^2 + d_{2}^2)$$

we can now redefine previous expression as

$$H^{k+1} = \frac{2 \cdot (1 + 2 \alpha) g}{(1 + \alpha)^2 z + 4 \alpha (1 + \alpha) f + \alpha^2 z^2}$$

Now we will compute the coefficient α from quadratic equation

$$\alpha^2 \left(H^{k+1} (2z + 4f) \right) + \alpha \left(H^{k+1} (2z + 4f) - 4g \right) + H^{k+1} z - 2g = 0$$

www.neuronsw.com
How our technology works?

Training data Magic Smart applications
How our technology works?

Training data → Magic Learning → Smart applications
Audio type of data pre-processing

Sound/Vibration represents a change of pressure

Spectrum representation – lose the time dependency of the signal

Spectrogram – combines frequency analysis and time
Spectrograms are further processed

Spectrograms fully represent the original sound. However, the amount of data has to be reduced to a level better suited for deep learning (e.g., cepstrum and Neuron soundware unique method).

Convolutional neural networks are trained to recognize patterns in sound “maps”.

Contact: pavel.konecny@neuronsw.com, +420 604 182 351

www.neuronsw.com
Classification of the sound

Neuron soundware applies:
- Combination of convolutional and fully connected layers
- 1D and 2D convolutions
- ReLU/ELU for non-linear signals
- Dropout
- Recurrent LSTM
Examples from an image classification

Contact: pavel.konecny@neuronsw.com, +420 604 182 351
NeuronSW analytical platform - integrated SW and HW solution

Deep Learning

audio stream

expert knowledge

issue detection & prediction

Diagnostic neural network

adaptation

acoustic model
Escalator analysis comparison

Prehrat' zvuk eskalátora

OK
Ballustrade
Chain
Engine
Creaking steps
Tensor
Track
Vibrations

Prehrat' zvuk eskalátora

OK
Ballustrade
Chain
Engine
Creaking steps
Tensor
Track
Vibrations
See the live test

Prehrat' video
Self-driving cars

Invoice data mining - rossum.ai

AI Art - dreamscopeapp.com

AI Design
We are looking for customers to challenge our technology.

Contact: pavel.konecny@neuronsw.com, +420 604 182 351